Este é um ambiente de STAGING. Não é o site de produção!
Voltar para notícias

Vencedor do Prêmio IMPA-SBM questiona origem matemática

Imagem: Reprodução Superinteressante/ Design: Maria Pace

Reprodução da matéria “A matemática foi descoberta ou inventada?”, de Bruno Vaiano na Revista Superinteressante

Os matemáticos bem que se esforçam, mas não conseguem evitar o mundo real. É o caso de Godfrey Hardy. Em 1940, o britânico escreveu: “Poucas coisas da matemática têm alguma utilidade prática, e essas poucas coisas são muito enfadonhas!”. Em outra ocasião, pegou um pouco mais pesado: “Nenhuma descoberta minha fez, ou poderá fazer, direta ou indiretamente, para o bem ou para o mal, a menor diferença para o mundo”.

Hardy mordeu a língua. Depois de morrer, ficou famoso por revolucionar uma ciência extremamente prática: a biologia. Em 1908, ele propôs a equação de Hardy-Weinberg. Ela é tão simples que faz parte do currículo escolar. Mas foi poderosa o suficiente para unificar as duas ideias mais importantes da história da biologia: a genética de Mendel e a seleção natural de Darwin.

Leia mais: Webinar reúne vencedores do Prêmio IMPA-SBM de Jornalismo
No Prêmio IMPA-SBM, Fantástico mostra efeitos de corte no CNPq
Brasil leva prêmio da Interpore por atividades científicas

Para entender como, vamos revisar primeiro qual foi a ideia de Mendel. Em cada animal ou planta, há traços genéticos dominantes, como flores roxas, e recessivos, como flores brancas. Se um pé de ervilha (como os que Mendel usou em seus experimentos) herda um gene roxo do pai e um gene branco da mãe, as flores serão roxas, porque o gene roxo se sobrepõe ao branco. Até aí, beleza.

Darwin, por sua vez, afirma que, se uma característica é benéfica para a sobrevivência e reprodução do indivíduo, ela vai se espalhar por aí. Mas e se o traço bom, nesse caso, for a cor branca? Por exemplo: talvez insetos polinizadores gostem mais de flores brancas. Como a seleção natural vai fazer o branco se espalhar se o roxo é o traço dominante? Tal contradição fez os acadêmicos coçarem a cabeça e tomarem partido, como se tivessem que escolher entre Darwin e Mendel.

A equação de Hardy conciliou os dois demonstrando algo que soa contraintuitivo: que a lógica de genes dominantes e recessivos, por si só, não é capaz de fazer com que as flores brancas sumam com o tempo, dando lugar às roxas. Na verdade, a equação prova que a porcentagem de genes brancos que circulam na população dos pés de ervilha é fixa. Os genes recessivos não deixam de existir só porque são recessivos.

Para que um gene de fato desapareça de uma população, seja ele recessivo ou dominante, é necessária a intervenção de uma força externa que dê preferência a uma cor ou outra – como, por exemplo, abelhas que gostam de flores brancas. E isso é a tal da seleção natural.

Uma teoria com um alicerce matemático elegante (como se tornou a evolução após Hardy dar a explicação acima) com frequência se revela também uma teoria que faz previsões precisas sobre a natureza.

A matemática se nega a existir só por existir. Ela é muito eficaz na tarefa de explicar e manipular o mundo; eficaz de um jeito quase inverossímil. Não é só com a teoria da evolução que dá certo. As páginas desta revista são diagramadas com base em princípios matemáticos. Bem como seus móveis e a casa em que você mora. Computadores, instrumentos musicais, satélites de GPS, bonecas de crochê, máquinas de hemodiálise, túneis de metrô, a agricultura, a bomba atômica.

As dez equações da Relatividade Geral descrevem o próprio tecido do Universo. As quatro equações de Maxwell, todos os fenômenos eletromagnéticos (sem elas, não existiria nenhum aparelho eletrônico). Uma única equação de Schrödinger prevê a probabilidade de se encontrar um elétron em qualquer ponto da órbita de um átomo. E nós somos feitos de átomos.

Tantas equações com esse poder explicativo fizeram Einstein se perguntar: “Como é possível que a matemática, um produto do pensamento humano que é independente da experiência, se encaixe tão bem com os objetos de nossa realidade física?” Ele não foi o único. O físico James Jeans, bem menos famoso, comentou: “O Universo parece ter sido projetado por um matemático”. Eugene Wigner escreveu: “O milagre de que a linguagem da matemática é apropriada para a formulação das leis da física é um presente que nós não entendemos, nem merecemos”.

Os físicos, às vezes, desenvolvem na marra as ferramentas matemáticas que precisam para explorar a natureza. O exemplo mais citado é o de Newton: com apenas 24 anos, criou o cálculo diferencial e integral – disciplina que até hoje aterroriza universitários da mesma idade, e que é essencial na rotina de engenheiros e economistas.

Em outros casos, porém, matemáticos cuja obra era puramente abstrata legaram ideias que só décadas ou séculos depois se revelaram úteis para entender um fenômeno. As elipses, parábolas e hipérboles estudadas pelo obscuro Menêcmo na Grécia Antiga só encontraram uma finalidade prática 2 mil anos depois, quando Kepler sacou que as órbitas dos planetas em torno do Sol são elípticas.

A famosa sequência de Fibonacci, na qual cada número corresponde à soma dos dois anteriores (1, 2, 3, 5, 8, 13, 21…) surgiu como algo abstrato. Depois, descobriu-se que ela está por trás da geometria dos abacaxis, dos girassóis, das conchas… Ela é, de fato, parte da natureza.

Um caso importante dessa aplicação “passiva” – em que uma área da matemática é primeiro desenvolvida como uma pura abstração e só depois, por acidente, é encontrada pelos físicos na natureza – está por trás da Relatividade Geral de Einstein. Voltemos um pouco no tempo.

Por mais de 2 mil anos, desde o trabalho do bom e velho Euclides na Grécia Antiga, toda a geometria foi euclidiana, isto é, a geometria que aprendemos na escola. Ela obedece a alguns axiomas bem intuitivos, conhecidos por todos nós. Por exemplo: uma reta é o menor caminho entre dois pontos; duas retas paralelas nunca se cruzam etc. Dentro dessas “regras”, é possível provar alguns teoremas elegantes, como o de Pitágoras.

O problema é que a geometria de Euclides é feita para funcionar em uma folha de papel. Ela é plana. Mas basicamente todas as coisas do mundo real têm alguma curvatura. Como a superfície da Terra. Ou, para usar um exemplo mais palpável, a superfície laranja de uma bola de basquete.

E a questão é que superfícies curvas bagunçam a geometria feijão-com-arroz de Euclides. Por exemplo: qual é o caminho mais curto entre o “polo sul” e o “polo norte” da bola de basquete? A resposta é que há mais de um caminho. A bola é dividida em gomos, e qualquer uma das linhas pretas que dividem os gomos percorre a mesma distância para ligar esses dois pontos. Os axiomas euclidianos se desmancham: agora, há mais de um caminho mais curto entre dois pontos.

No século 18, o matemático Carl Friedrich Gauss percebeu que era possível desenvolver uma geometria universal, que desse conta de explicar o que acontece em superfícies com as mais diferentes curvaturas. Essa nova área da matemática alcançou uma complexidade absurda com outro alemão, Bernhard Riemann, no século 19.

A geometria não euclidiana de Riemann já foi descrita como “diabolicamente difícil”. Albert Einstein em pessoa tinha dificuldade em lidar com ela, e por conta disso não conseguia terminar sua Teoria da Relatividade Geral. Um amigo dele, o matemático Marcel Grossmann, não tinha esse problema, e socorreu o alemão.

Ainda bem. Armado com a geometria de Riemann e a habilidade do amigo Grossmann, Einstein criou uma nova forma de descrever a força da gravidade. Ele mostrou que o “corpo” do Universo é repleto de curvas: a gravidade existe porque as luas, planetas e estrelas dobram o tecido do espaço-tempo com a sua massa, da mesma maneira que você afunda o colchão quando deita nele. Nós nos sentimos atraídos em direção à superfície da Terra por estarmos escorregando na dobra que ela cria no tecido do espaço-tempo.

Isso, obviamente, não é só uma ideia. Está mais para um fato. Se você usar as equações do alemão para fazer cálculos sobre a órbita de um planeta, por exemplo, obterá uma precisão de várias casas decimais. Tudo isso graças à geometria desenvolvida por Riemann lá atrás, em 1850, como um mero exercício filosófico.

Coincidências assim levam à questão que dá título a este texto. Será que a matemática consiste em uma série de padrões intrínsecos à natureza – e nós apenas deciframos esse código pré-existente em que o Universo está escrito? Ou será que a matemática é um sistema de manipulação de símbolos artificial, criado pelo ser humano para explicar o mundo?

Em outras palavras: os números existem ou são invenções? No fundo, esta é uma pergunta sem resposta. Mas é óbvio que muita gente tentou respondê-la. Jonathan Tallant, professor de filosofia da Universidade de Nottingham, divide tais tentativas em três categorias.

Leia também: 3º lugar no Prêmio IMPA-SBM fala da evolução matemática
Na Grécia antiga, matemática era um ‘presente dos deuses’

 

Este site está registrado em wpml.org como um site de desenvolvimento. Você pode mudar para uma chave de site de produção para remove this banner.